- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Beaudry, Christopher_M (3)
-
Dey, Patrick_N (1)
-
Fang, Chong (1)
-
Giesbers, Gregory (1)
-
Kim, Ryan (1)
-
Krueger, Taylor_D (1)
-
Lu, Yi (1)
-
Ostroverkhova, Oksana (1)
-
Points, III, Gary_L (1)
-
Robinson, Seri_C (1)
-
Stout, Kenneth_T (1)
-
Van_Court, Ray_C (1)
-
Zhu, Liangdong (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Intramolecular pyridinium oxide cycloadditions form complex polycyclic nitrogenous architectures. The diastereoselectivity and regioselectivity of pyridinium oxide cycloadditions was systematically investigated for the first time using complex substrates. Predictably high levels of diastereoselectivity and regioselectivity are observed, which can be attributed to minimization of steric (syn‐pentane) and torsional strain in the products. The reaction is reversible under the reaction conditions, and it is stereospecific with respect to the dipolarophile geometry.more » « less
-
Points, III, Gary_L; Stout, Kenneth_T; Beaudry, Christopher_M (, Chemistry – A European Journal)Abstract A Diels–Alder reaction‐based strategy for the synthesis of indoles and related heterocycles is reported. An intramolecular cycloaddition of alkyne‐tethered 3‐aminopyrones gives 4‐substituted indolines in good yield and with complete regioselectivity. Additional substitution is readily tolerated in the transformation, allowing synthesis of complex and non‐canonical substitution patterns. Oxidative conditions give the corresponding indoles. The strategy also allows the synthesis of carbazoles. The method was showcased in a formal synthesis of lysergic acid.more » « less
-
Krueger, Taylor_D; Giesbers, Gregory; Van_Court, Ray_C; Zhu, Liangdong; Kim, Ryan; Beaudry, Christopher_M; Robinson, Seri_C; Ostroverkhova, Oksana; Fang, Chong (, Chemistry – A European Journal)Abstract Organic semiconductor materials have recently gained momentum due to their non‐toxicity, low cost, and sustainability. Xylindein is a remarkably photostable pigment secreted by fungi that grow on decaying wood, and its relatively strong electronic performance is enabled by π–π stacking and hydrogen‐bonding network that promote charge transport. Herein, femtosecond transient absorption spectroscopy with a near‐IR probe was used to unveil a rapid excited‐state intramolecular proton transfer reaction. Conformational motions potentially lead to a conical intersection that quenches fluorescence in the monomeric state. In concentrated solutions, nascent aggregates exhibit a faster excited state lifetime due to excimer formation, confirmed by the excimer→charge‐transfer excited‐state absorption band of the xylindein thin film, thus limiting its optoelectronic performance. Therefore, extending the xylindein sidechains with branched alkyl groups may hinder the excimer formation and improve optoelectronic properties of naturally derived materials.more » « less
An official website of the United States government
